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The present study aims 1) to investigate theoretically the relation between the craze 
microstructure and the basic materials parameters such as the yield stress and the surface 
energy and 2) to provide a detailed thermodynamic treatment of a single isolated craze in 
glassy polymer tested in an aggressive liquid environment. Based on the assumption that 
the craze tip is somewhat blunted by small scale yielding and on the Taylor meniscus 
instability as the mechanism responsible for the propagation of the leading edge of the 
craze, the detailed micromechanical analysis is used to provide estimates of the critical 
opening displacement of the craze for growth initiation, mean fibril spacing, mean fibril 
diameter and fibril volume fraction at the craze tip. The influence of aggressive liquid 
environments on the yield stress and the surface energy is discussed together with predicted 
changes in the craze microstructure. The thermodynamic analysis starts with the recognition 
that induced high negative pressures around the craze tip can increase the solubility of 
a liquid at this site by several orders of magnitude. As a consequence the local density of 
thermodynamic potential drops significantly. This unbalanced fall in thermodynamic 
potential provides an additional driving force for the craze advance. It is shown that 
a corresponding release of external load is required to preserve the overall balance of the 
specimen with craze. 

I. I n t r o d u c t i o n  
It is a matter of record that many polymeric materials 
loaded mechanically and immersed in certain kinds 
of liquid undergo much more readily failures by 
crazing and/or cracking than in air conditions 
[1,2]. It should be noted that the failure promo- 
ting liquids are very often non solvents and chemically 
inert for polymers. This phenomenon, generally 
called "environmental stress cracking" (ESC), 
has been subjected to intensive experimental and 
theoretical [3 7] research in the past two decades 
because of its serious consequences in engineering 
structures. 

Substantial work has been devoted to the mecha- 
nism of craze initiation at imperfections generally 
present at the interface of a stressed or strained poly- 
mer in certain liquid environments and also to the 
mechanism of subsequent growth [8, 9]. 

On a molecular level the effect of aggressive liquids 
and gasses is observed in changes in the spectrum of 
relaxation times. A reduction in the relaxation time 
associated with the collective motion of molecular 
segments results in a decrease in stiffness of the mater- 
ial. Agents having this influence are usually termed 
plasticizers. 

The known experiment@data base clearly demon- 
strate that crazing agents reduce the resistance to 
plastic deformation. The two main modes of action 
which have been envisaged for crazing agents are; 
(i) the depression of the glass transition temperature, 
Tg, i.e. the plasticization of the material, and (ii) the 
reduction of the surface energy of the craze fibrils. The 
depression of Tg has usually been approximated in 
terms of the concentration of the absorbed crazing 
agent in the polymeric material by formula 

G((p) = 0.63q) Tm + (1 - (p)T~(0), (1) 

where (p is the concentration of absorbed crazing 
agent, T,n is the melting temperature of the absorbed 
component and Tg(0) is the glass transition temper- 
ature of the pure amorphous polymer (q0 = 0). The 
reducfion of the resistance to plastic deformation can 
then be,described using the results obtained for 
PMMA by Ward [10] who proposed a simple 
relationship between the yield stress and the glass- 
temperature 

T~(,))- T 
~(q), T) = ,~(0, T) G(0) T '  (2) 
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in which Tg(0) and Tg(q~) are defined as in Equation 1, 
T is the actual temperature and cyv(0, T) represents 
the yield stress of the pure amorphous polymer at this 
temperature. 

It is a matter of long dispute whether the reduction 
of the resistance to plastic deformation or the reduc- 
tion of the surface energy is more important in promo- 
ting ESC. For a long time the plasticization has been 
considered to be more dominant. Namely, the reduced 
resistance to molecular motion caused by the plastic- 
ization should facilitate the formation of voids, which 
then develop into crazes and also should facilitate 
crack propagation. It would, however, also be ex- 
pected to lower the yield stress and make shear yield- 
ing easier. This leads to the possible dilemma as to 
why a reduction in yield stress produces a more brittle 
behaviour. It is the goal of this paper to shed some 
light on this problem. 

In addition we will also address the changes in 
craze microstructure due to the environment, parti- 
cularly at the craze tip. Two characteristics of the 
craze microstructure, i.e. the mean fibril diameter, 
D, and the mean fibril spacing will be investi- 
gated theoretically. So far these characteristics 
have been obtained only experimentally using trans- 
mission electron microscopy, small-angle X-ray 
and small-angle neutron scattering. It was found 
[2] that the presence of a crazing agent generally 
results in coarser craze fibrils and a greater mean fibril 
spacing. 

2. Analysis 
The analysis consists of two main sections. In the 

first section a micromechanical analysis of the leading 
edge of a craze is provided with the aim of deriving 
a critical displacement at the craze tip, hcrit , which 
ensures the initiation of craze advance. An estimate of 
the mean fibril diameter and the mean fibril spacing 
will also be given. 

The second section deals with a thermodynamic 
analysis of a single craze in a polymer sample immer- 
sed in a certain kind of liquid and subjected to a defor- 
mation or load. The craze growth will be interpreted 
in terms of a disturbance of the thermodynamic 
equilibrium rather than the normally considered 
mechanical equilibrium. In terms of the thermo- 
dynamics the immersed polymeric material is treated 
as an open system, i.e. a system in which mass may 
be transported to or from surroundings. A thermo- 
dynamic force resulting from the thermodynamic 
non-equilibrium between the polymer sample and 
the environment plays the role of an additional 
driving force for the craze growth. It is suggested 
that the traditional fracture mechanics approach 
has to be extended to incorporate "other loading 
mechanisms" of non-mechanical, i.e. chemical, origin 
in order to assess the craze stability satisfactorily. 
The critical displacement derived in the first section 
is later applied in the course of the thermodynamic 
analysis. Note that since the quasi-static initiation 
of craze growth is addressed, all rate effects will be 
omitted. 

2.1. M i c r o m e c h a n i c s  of  c raze  a d v a n c e  
In a series of papers Argon and Salama [11, 12] de- 
veloped a mechanism for the propagation of the lead- 
ing edge of the craze that utilized the so-called Taylor 
meniscus instability [13]. Remarkable experimental 
confirmation of this process has been given by Donald 
and Kramer [14]. 

It is argued that the craze tip is somewhat blunted 
by small scale yielding. The interface between the 
craze and uncrazed polymer is considered to have 
a sinusoidal perturbation of wavelength A of the fol- 
lowing form, see Fig. 1 

2 ~ z  
x = x0 + C sin . (3) 

A 

The interface is moving under a hydrostatic stress 
gradient dp/dx. The perturbation introduces a radius 
of curvature P = A 2 / 4 ~ 2 C ,  which because of the sur- 
face energy F causes a hydrostatic stress necessary to 
increase the perturbation. It was shown [12, 15] that 
the fastest growing wavelength Ae is 31/2A m where A m 

is the minimum wavelength for the perturbation to 
grow 

Am = (r/(dp/dx)) ~/2. (4) 

@ @ 

@ N 

Figure 1 A schematic representation of the process of fibril forma- 
tion at the advancing craze tip 
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For an ideally plastic material neglecting all rate 
effects, Af is given by the simple formula 

(6 hT2 
Af = rC , (5) 

\ ~ 0 /  

where h is the opening displacement at the craze tip 
and % is the yield stress in shear. 

2. 1.1. Theoretical model  
Accepting the Taylor meniscus instability as the mech- 
anism for propagation of the leading edge of the craze, 
we will first try to describe the growth in the perturba- 
tion. With reference to Fig. 1, we assume that the 
perturbation grows by a simultaneous increase in am- 
plitude and expansion of void "fingers" like a cylin- 
drical cavity in the surrounding stress-strain field. The 
convolution of the leading craze edge must induce the 
perturbation of the strain field some distance ahead of 
craze tip. If initially, the state of plane-strain prevailed 
at some point ahead of the craze tip, this ceases to be 
true as the perturbed craze tip approaches this point 
because the condition of plane strain ez = 0 cannot be 
sustained any longer since the material is being redis- 
tributed along the leading craze edge. It is matter of 
interest to find a point where the unperturbed and 
perturbed field match each other. Note that a similar 
problem was discussed by Argon and Salama [11]. 

The distribution of radial and tangential strain rates 
in terms of the uniform axial strain r a t e  ~y (the y-axis is 
chosen now as the axis of cylindrical symmetry) and 
the strain rate i'o/r0 at the inner radius re of a cylin- 
drical hole are well-known [16, 17]: 

g r -- ?.2 q- 2 ' (6) 

go = r ~ \ r e  + 2 " (7) 

It follows from Equation 7 that there exists a radius 
r where go = 0 for ?0 > 0. We adopt Equations 6 and 
7 to approximate the perturbed field ahead of the 
corrugated craze tip bearing in mind their highly ap- 
proximate character because of the non uniformity of 
the axial strain r a t e  gy and interaction between neigh- 
bouring void "fingers". Following McClintock's [17] 
extrapolation to elliptical holes, we identify i'o/r o with 
the mean radius growth rate 9~l/91 for which the fol- 
lowing equation holds [17] 

~l g3~/2 sinh ~" + au 
91 2 ~s 2 

where ~ ,  eb, %,  ~b are remote strains and stresses in 
the plane perpendicular to the cylindrical axis y, g is 
the equivalent strain defined as 

= 9 (~a - -  ~b) 2 ~- (~b - -  ~y)2 _~_ (~y __ ~a)2 (9) 

and ~ is the equivalent Mises yield stress 

= 31 /2%,  (10) 

where To is again the yield stress in shear. Because of 
the plane strain conditions eb = 0 and ea = --ey, thus 

2 
= ~ ~y.  (11) 

The values of c~a and ~b are estimated from the results 
of an exponential slip line field ahead of a semicircular 
notch tip [18], assuming the same kind of field ahead 
of the blunted craze tip. This provides 

2 - 2% + log , (12) 

where ~ is measured from the notch tip centre curva- 
ture with the radius h/2. The maximum value of 
(% + ~b)/2 is achieved at ~ = h/2 exp(~/2) when the 
spiral region completely envelopes the semicircular tip 
giving 

- 2% + . (13) 

Substituting Equations 10, 11 and 13 into Equation 
8 we get 

= gysinb + rc (14) 
9t 2 '  

or, accounting for the effect of surface tension 

~l gy sinh + = (15) 
91 T 2 

Before substituting Equation 14 or Equation 15 into 
Equation 7 we need to know an initial local "porosity" 

~ (2ro/Af) 2, or the initial value of r0 in Equations 
6 and 7. This is a rather arbitrary element of the 
analysis. In the work of Argon and Salama [11] the 
value c, ~ 0.1 is considered. This value may be easily 
justified by the consideration that the radius of curva- 
ture of the perturbation P = Ag/4rc2C decreases with 
increasing amplitude C of the perturbation. At the 
moment when P = C, the perturbation is quite well 
developed, and half the wavelength of a sine curve 
may be approximated by a semicircle. The perturbed 
strain field ahead of the corrugated craze tip may be 
approximated by Equations 6 and 7 and as a conse- 
quence of local applied stress and strain the curvature 
radius again increases due to the expansion of void 
"fingers", Identifying P with r o at the moment when 
P = C we get 

Af 1 ( 6 F h )  1/2 
- , ( 16 )  re 2~ 2 \ To / 

1 
which gives the porosity a ~ \ A f ]  = ~ ~ 0.1. Subs- 

tituting Equation 14 or Equations 15 and 16 and 
5 into Equation 7 we obtain 

~e = - - "  + r~ (17) 2Tor z~ysmh 2 ' 

or  

g0 = 2%r2gysmh + r e -  - ~ - .  (18) 
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Substituting again the co-ordinate ~ using the relation 

r = ~ - h i2  - ro = ~ - h i2  - ( 3 F h / 2 % )  112 , 

we obtain 

~0 = 2Zo[~-h/2  - (3Fh/2"ro) l /2]  2 ~ y s i n h  +re - - -  

~y 

2' 

(19) 

or  

3Fh 
~0 - 2"Co [~ - h i 2  - ( 3 F h / 2 z o ) l / 2 ]  2 ~y 

[1 ( 2F ~1/2"] ~y (20) 
sinh ~ + r t -  \3"coh] d 2" 

Equations 19 and 20 approximate the component of 
the perturbed strain field ahead of the craze tip. It is 
seen from Equation t9 or Equation 20 that e0 de- 
creases with the distance from the craze tip and with 
decreasing craze tip opening h. The same picture 
emerges if instead of Equation 13 the current value of 
local stress from Equation 12 is substituted into either 
Equation 19 or Equation 20 as can be easily confirmed 
by numerical calculations. 

Clearly, the distance from the craze tip, where the 
ge component of the perturbed field equals zero and 
thus matches the plane-strain conditions prevailing far 
ahead of the craze tip (go = g~ = 0), decreases with 
decreasing craze tip opening h. 

It is a matter of interest to find the lowest critical 
value of the craze tip opening hcrit that still ensures 
that the perturbation will grow. As a criterion we take 
the condition that the perturbed field has to be con- 
fined within the zone of intensive plastic strains, i.e. 
within the exponential spiral slip line region, other- 
wise the relations described by Equations 12-15 do 
not hold. The lowest value of horit is reached just when 
the perturbed field matches the outer plane-strain field 
at ~ = hr In Fig. 2 we have shown the 
normalised distance ~/(h/2) ahead of the craze tip as 
a function of h for different values of %, where the 
g0 component of the perturbed field matches the plane 

strain conditions. All curves are cut at points where 
the value of ~/(h/2) crosses the bound exp(n/2). It can 
be seen that as h increases the boundary of the pertur- 
bed field moves inside the exponential spiral slip line 
region. Thus h~it can be expressed analytically from 
Equation 19 with g0(~ = h r  = 0 as 

hcrit 6F ~[2sinh(1/2 + rc)] 1/2 + 1} 2 

or, when using Equation 20, found by numerical solu- 
tion of the transcendental equation 

( ~ )  '/2FsinhT-s 1 1 2 + g - \ ~ / (  2F ~1/2~ 

-- h~it [ e x p  ( 2 )  - 1 - -  (22) 

Having found the critical opening displacement hcrit 
we can estimate the upper and lower bounds for the 
fibril diameter D by the following simple geometric 
considerations. If we recall the starting assumption 
about the growth of corrugations being the combined 
increase of perturbation amplitude and the void "fin- 
gers" expansion, the picture of the final state of corru- 
gation development may be drawn as shown in Fig. 3. 
The tip of void "finger" penetrates a distance 
h~ri j2(exprc/2  - 1) and touches the neighbouring void 
"finger" leaving behind tufts of material which will 
form the craze fibrils. The geometrical dimensions are 
indicated in Fig. 3. After the coalescence of the void 
"fingers", the tufts of material left in the wake, reshape 
to cylindrical form thereby reducing their surface en- 
ergy. The lower bound of the fibril diameter is then 
identified with the radius of the circle that touches two 
neighbouring void finger circles and the z axis stand- 
ing for the craze leading edge before the onset of 
perturbation. Thus 

[h~i t /2(exprc /2  - 1) - 1~(3Fh~it/2"ro)*12] 2 
if)rain - -  

hr - 1) 

(23) 
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Figure 2 Plot of the normalised distance ~/(h/2) ahead of craze tip as 
a function of h for the values of to of:( . . . . . .  ) 10 MPa, ( . . . .  ) 
15 MPa, ( - - - )  20 MPa, ( . . . .  ) 25 MPa and ( - - )  30 MPa. 
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The upper bound is taken as the diameter of the circle 
that touches the z axis and goes through the contact 
point of the void "fingers". This provides 

~rnax hcrit ( /~ ) { 3 F h o r i ' ~ l / 2 ( 2 4 )  
- 2 e x p , -  1 - r e \  2% // 

and the fibril diameter D is assumed to be approxim- 
ated by the geometrical mean of J~max and J~mln 

(/[hcr it/2 (e xp ~/2 - 1) - r~ (3 Fh~ ~i ]2~ o) 1/2] 3~1/2 
f) = \ horl,/2(exp~/2 - 1) / ' 

(25) 

Finally, the relative volume of the craze fibrils vf can 
be estimated as follows 

~2 ,1~0 ~2 

vf ~ Af 2 - 6rc2Fh~rit . (26) 

Note that the value of D and vr refer to the craze tip 
where the relative volume of craze fibrils and the mean 
fibril diameter are considerably smaller than the aver- 
age values in the craze. 

fibril diameter where data obtained by using Equation 
22 lie about 6% above the values computed when 
Equation 21 was used to estimate hcrit. As can be seen 
from Fig. 5, the predicted fibril diameter values vary 
from 8-100 nm, which is also consistent with experi- 
mental data for many polymers, especially at the lower 
end of the predicted range. The upper end of the 
predicted range was computed from combinations of 
the yield stress and surface energy values that do not 
usually occur in real polymers, i.e. low yield stress 
values and high surface energy values. This remark 
also holds for other parameters, i.e. hcrit and Af. 

The weakest influence of the correction in Equation 
22 is encountered in the computation of the 
w a v e l e n g t h  Af, see Fig. 6, where the correction in 
Equation 22 provides values of Af only about 1.5% 
h ighe r .  Af can be identified with the mean spacing of 
fibrils and the results for Ar ranging from 20-260 nm 
are again quite realistic. 

It is apparent from Figs. 4 6 that all the investi- 
gated parameters h~t, D and Af change remarkably 
with changes in the yield stress and surface energy. 
Using Equation 21, the analytical expressions for 

2. 1.2. Numerical  results and discussion 
Equations 5 and 21-26 were evaluated for 
F e [0.02;0.08] Jm -2 and ~o e [10;30] MPa. Whilst 
the chosen F values cover nearly the whole range of 
surface energies for many polymers, the chosen "c o 
range covers only a part of typical shear yield stress 
values of polymers. However, for our purposes it will 
be sufficient since the trends of the curves are quite 
apparent. 

First let us examine the results obtained for h~r~ via 
Equation 21, see Fig. 4. It is plausible that hcrit values 
lies within the interval [10-140] nm, since that is in 
accordance with experimental observations. The re- 
sults obtained via Equation 22 which include the influ- 
ence of the surface energy tension during the expan- 
sion of "fingers" are higher but differ by only 3 4%. 

A somewhat greater influence of the correction in 
Equation 22 can be observed in the predicted values of 
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Figure 5 Plot of the fibril diameter D at the craze tip as a function of 
% for different values of F, ho~i~ computed after Equation 22. The 
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D and Af are as follows; 

3F 1 L) = [A / (A  - -  g)3"] 1/2 (27) 
ZO exprt/2 -- 1 

and 

~A 6F 
Af - , (28) 

exp ~/2 - 1 z0 

where A = [2sinh(1/2 + ~)]1/2 + 1 = 7.17. 
By inspection of D and Af for different values of z0 and 
F, one can find that, due to a plasticizer, the micro- 
structure of the craze could become coarser. This is 
especially the case with those polymers and environ- 
ments where only a small change of the surface energy 
occurs. We will address the problem of the surface 
energy in more detail later. 

A particular property of the model is that the rela- 
tive fibril volume vf computed from Equation 26 is 
constant for all combinations of % and F as can be 
easily seen from Equations 26-28. With herit computed 
via Equation 21 the volume fraction vf is 0.14 and with 
hcrit computed via Equation 22 a value of 0.16 is 
obtained. Both values are in excellent agreement with 
the actual value of vf at the craze tip which is reported 
for many polymers to be about 0.15-0.20. The predic- 
tion, that the fibrils volume fraction at the craze tip 
should be rather insensitive to changes in the yield 
stress and the surface energy, seems to be in accord, for 
example, with the findings of Brown and Njoku [19] 
for polystyrene (PS) plasticized between 0 20% of 
dibutyl phthalate (DBP). Only a slow change of the 
average fibril volume fraction with increasing content 
of DBP was reported. However, it has to be taken into 
account that, in air conditions, the vast majority of 
crazed matter is produced not at the craze tip, but 
further back by drawing from the substrate. With 
increasing content of plasticizer the mechanism of 
craze thickening starts to be replaced by fibril exten- 
sion. Clearly this change in the craze thickening mech- 
anism with increasing content of plasticizer may also 
be responsible for the slow change in fibril volume 
fraction and so the predicted insensitivity of fibril 
volume fraction at the craze tip to changes of yield 
stress and surface energy seems to be justified. 

To discuss the influence of the surface energy 
change we start with the remark that some modifica- 
tion of the original entanglement network is necessary 
for the transition from randomly aligned entangled 
molecules to an array of oriented fibrils in the craze. In 
principle, Kramer [20] has noted that "geometrically 
necessary entanglement loss" could occur either by 
chain scission or by disentanglement of the chains 
thus allowing the transition to take place. In polymers 
such as PS, chain scissio'n is the dominant mechanism 
of network modification under ambient conditions. 
The energy required to create the surface is then [21] 

1 
F = 7w + -~rldU,  (29) 

where 7w is the van der Waals surface energy, 1"1 is the 
density of network strands, d is the square root end-to- 
end distance between junction points in the network 

and U is the polymer backbone bond energy. The van 
der Waals surface energy for many polymers is about 
0.04 Jm -2. For  a polymer with a strand density of 
3 x 1025m -3 the chain scission term approximately 
equals 0.04 Jm -2 so that F ~ 0.08 Jm -2. Since rid 
scales roughly as 1"11/2, increasing the strand density of 
the network leads to a strong increase in F. 

The effect of a plasticizer on F appears to con~st  of 
the promotion of a transition from scission-dominated 
crazing to disentanglement-dominated crazing due to. 
enhanced chain slippage and a reduction of the van 
der Waals surface energy 7w due to the interface 
polymer-environment. The former effect seems to be 
more important, especially when the crazing in air 
conditions is scission-dominated. The transition from 
scission-dominated crazing to disentanglement- 
dominated crazing as a function of temperature was 
explored by Berger et al. [22]. 

Thus, if the change in surface energy is primarily 
due to the transition from the scission-dominated to 
the disentanglement-dominated regime as a conse- 
quence of enhanced slippage and because the same 
mechanism of enhanced slippage controls the reduc- 
tion of the yield stress it can be expected that within 
a certain range of temperature and/or plasticizer con- 
tent the ratio F/'c0 is constant. This results in a cons- 
tant mean spacing of fibrils Af, see Equation 28, which 
was actually observed by Berger et al. [22-]. 

2.2. Thermodynamics of environmentally 
stimulated craze advance 

Some initial ideas concerning the complex nature of 
ESC, developed from the viewpoint of irreversible 
thermodynamics, have been presented by Okamoto 
and Ohde [23]. An effective method for including the 
thermodynamics of crazes into a fracture mechanics 
approach has been sought by Chudnovsky et al. and 
Stojimirovic et al. [24, 25]. A detailed discussion of 
this work is beyond the scope of this review and we 
refer interested readers to the original papers. 

2.2. 1. Theoret ical  mode l  
Consider a polymer sample with an isolated craze 
immersed in a certain kind of liquid and subjected to 
a deformation or load. Assume that the transport of 
liquid into the craze is assured either by side-flow, 
capillarity flow, following Darcy's flow law and/or 
diffusion. From a thermodynamic viewpoint, the state 
of the system consisting of the bulk material, a craze, 
an environment and a loading mechanism is, in gen- 
eral, unstable, since its thermodynamic potential is not 
at a minimum. For further development it is desirable 
to specify the term "thermodynamically unstable". In  
fact, in the problem with which we are dealing, the 
thermodynamic nonequilibrium is created by two 
sources. One is the intrinsic metastable state of glassy 
polymer, which is more or less far from thermody- 
namic equilibrium. The other is the system including 
the environment and the polymer which tends to- 
wards the equilibrium state according to the laws of 
thermodynamics of mixtures and strongly affects the 
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mechanical stability of the crazed sample and the 
loading mechanism. The former can be described 
within the framework of rational thermodynamics, see 
for example the work of Kestin and Rice [26] who 
used the concept of internal variables to characterize 
the microstmctural pattern of the material. For its 
application to polymers see for example the work of 
Struik [27]. The formalism of equilibrium thermo- 
dynamics is then adopted for processes which are 
running far from equilibrium through a sequence of 
so-called constrained equilibrium states. The pro- 
cesses are understood to be reversible if no changes in 
the values of internal variables occur. This concerns 
the bulk of the polymer which will be characterized as 
an elastic body. In other words, it is implicitly con- 
sidered that the relaxation times of physical aging in 
a bulk polymer are much longer than the relaxation 
times characterizing the transition towards equilib- 
rium between the polymer in craze zone and environ- 
ment. It is also assumed that the applied load is 
relatively small with respect to the yield stress of the 
polymer. The whole system is schematically depicted 
in Fig. 7. 

As indicated in Fig. 7, only isothermal processes are 
investigated. The environment may be assumed as 
a reservoir with its intensive parameters remaining 
constant. There is no exchange of energy or particles 
between the environment and the bulk material. The 
restriction for no exchange of particles between the 
craze zone and the bulk may seem to be too restrictive. 
In reality, some diffusion of small liquid molecules 
into the surrounding bulk can take place and, due to 
plasticization, it can support the drawing of new fibril 
material into the craze. However, the mechanical in- 
teraction between the bulk material and craze zone is 
of primary importance. As far as the bulk is concerned, 
only the total elastic strain energy and the potential 
energy of the loading mechanism rrlay change during 
the process of liquid transport into the craze. 

For the system consisting of environmental liquid 
and polymeric material and under the assumption 
that no polymer molecules are in the liquid, the Helm- 
holtz free energy is 

F = nr~t  r + n~,l }&,t - p 1 V 1  + n~,2g~,z - -  p2  V 2 , ( 3 0 )  

Environmen ~t 

External loading 

No exchange, of particles 

J 

f 
Flow of particles 
Tl= T~= T3= T 

Bulk of polymer j - -  

Mechanical 
interaction 

Craze 

Figure 7 The  scheme of the t h e r m o d y n a m i c  in teract ion between the 
crazed po lymer  and  the  env i ronment .  

where gr and ~ts.~ are the chemical potentials of a poly- 
mer molecule and a liquid molecule respectively in 
phase 1 (taken to be the polymeric material) and gs,2 is 
the chemical potential in phase 2 (taken to be the 
liquid environment). 

The nonequilibrium condition between the phases 
implies that irreversible spontaneous processes take 
place. The Helmholtz free energy of the whole system 
decreases reaching a minimum value in the equilib- 
rium state. It is clear from Equation 30 that the de- 
crease in Helmholtz free energy of the environment is 
caused by the removal of some liquid molecules since, 
as stated above, the intensive properties are assumed 
to be constant in the environment. Thus, it seems 
obvious to attribute the main change in the Helmholtz 
free energy to the part corresponding to the polymeric 
material. 

The Helmholtz free energy change of the polymeric 
material in the craze is suitably approximated by the 
Flory-Huggins lattice theory [283. The corresponding 
density of the Helmholtz free energy change (i.e. re- 
lated to the unit volume of mixture of polymer and 
liquid in craze fibrils) is then 

R T  
AfM = T X  

Vm2 

lnq~+ -q~ln_l( - q ~ ) +  --q~)q~+ 
p V m l  

t" s Me 

Ap V~I } 
[(1 - -  q))1/3 _ (1 - -  q)) /2  3 R T  q~ ' (31) 

where ,4) denotes the average concentration of liquid in 
the craze fibrils, R denotes the gas constant, T is the 
absolute temperature, V~,2 is the molar volume of 
a segment of polymer molecules and V~I is the molar 
volume of a segment of liquid molecules. The 
Flory Huggins relation takes into account various 
factors. First, the entropy of mixing is considered in 
the first two terms on the right side of Equation 31 
with r standing for the number of elements of polymer 
molecules and s standing for the number of elements 
of liquid molecules. Secondly, the energy of mixing is 
taken into account by the third term with Z standing 
for the polymerAiquid interaction parameter. The 
fourth term on the right side concerns the elastic 
energy changes on swelling, with 9 being the density of 
polymer and Me the molecular weight of a network 
chain molecule. The last term in Equation 31 ex- 
presses the influence of dilatant stress on swelling 
which is very important under higher stress levels and 
incompatible liquids with higher values of X- 
Ap = P l -  P2, Pl being the ambient pressure and 
P2 = - -  O-y/3,  where P2 is the negative pressure in the 
fibrils due to an uniaxial true loading stress Cry which 
can be identified with the yield stress in simple tension. 
If the ambient pressure p~ is atmospheric pressure, it 
can be neglected. Note that the yield stress is generally 
reduced due to plasticization and depends on the 
concentration q~ of the liquid in craze fibrils. The 
approximation from Equations 1 and 2 will be used 
for cyv in Equation 31. 
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The semi-cohesive zone model will be used to model 
the whole craze zone. This model is usually under- 
stood to be a modification of the Dugdale Barenblatt 
model which includes two distinctive non-linear zones 
at the crack tip. The zone immediately next to the 
crack is semi-cohesive in that it is filled with micro- 
cracks and voids whilst the further cohesive zone is 
a standard plastic zone. For the application of this 
model to an isolated craze in a glassy polymer let us 
first consider the schematic diagram of the cross- 
section of a full craze shown in Fig. 8. The main body 
of the craze has a sensible constant thickness which 
may vary from somewhat less than 1 gm to several pm 
depending on the polymer and the temperature. Over 
a distance of some tens of gm the thickness of the craze 
decreases to a crack-like tip, reminiscent in shape of 
the Dugdale plastic zone although, as shown in the 
paper of Lauterwasser and Kramer [29], the stress 
over the tip region is not a constant. Further, it was 
argued convincingly by Argon et al. [30] that if the 
craze is not to show accelerated growth rates, the 
stress along the body of the craze must approach the 
applied stress at a distance far from the craze tip 
region, i.e. along the main part where the craze no 
longer thickens. We will call this part the inert zone. 
Schematically, three different zones can be distin- 
guished along the craze length: 

(1) the plastic zone (a-b) at the craze tip, where 
the convolution by Taylor meniscus instability 
operates. 

(2) the active zone (b-c), where the craze thickening 
mainly by drawing of new material from craze 
flanks takes place, 

and 
(3) the inert zone 2c, where the craze no longer 

thickens. 
To make further analysis as tractable as possible, 

the stress along each of these zones is considered to be 
a constant having different values within each zone. 
Thus in fact, the 2-zone model of craze introduced by 
Verheulpen-Heymans and Bauwens [31] is extended 
to the 3-zone model. 

Such a combination of zones matches the physical 
mechanism of craze growth by Taylor meniscus insta- 
bility and approximates to the stress distribution in 
the region of craze tip. 

The equilibrium of inert/active/plastic zones shown 
in Fig. 8 is expressed in terms of a modified Barenblatt 
model as 

K[~o~] + K[c~o~] + K[c~J + Ki t ty ]  = 0, (32) 

where the elastic stress intensity term K [croci corres- 
ponds to the full craze length a, the semi-cohesive term 

2b 

2a 

Figure 8 Schematic diagram of the cross section of a craze. 
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K[c~or corresponds to the inert zone contribution, 
the semi-cohesive term K [cyo] to the active zone con- 
tribution and the cohesive term K[c~v] to the plastic 
zone contribution. According to Eshelby [32], Equa- 
tion 32 can be written in the form 

rCG~ - -  2 ( ~ y  - -  (Yc)COS- lb/a - 2CycCOS- tc/a 
- 2Cyocsin lc/a = 0,  (33) 

where cyoo is the remote applied stress, C~o~ is the stress 
within the inert zone of craze, e% is the stress along the 
active zone and (yy is the yield stress within the plastic 
zone. 

Note that the model includes a threshold applied 
stress intensity, and thus a plastic zone, below which 
a craze will not grow. Above this, a craze will begin to 
grow with an individual plastic zone larger than the 
threshold value. As the craze becomes longer, the 
fibrils within the craze pull back on the opening surfa- 
ces gradually reducing the stress intensity at the craze 
tip. Finally, at equilibrium the plastic zone at the craze 
tip has returned to the threshold value. The deter- 
mination of the opening displacement over the par- 
ticular zones is slightly more complex and is shown in 
Appendix 1. 

The equilibrium condition of Equation 33 is not 
solely sufficient to determine the length of a particular 
zone. Some extra criterion has to be included to re- 
solve this problem. For example, the threshold length 
of the plastic zone can be determined using the expres- 
sion for the opening displacement in (A6) and putting 
it equal to the critical opening displacement derived in 
the preceding section, see Equation 21. 

A mixed thermodynamic-fracture mechanics ap- 
proach to the craze advance begins by specifying the 
global change of the Gibbs potential of the polymer 
and the loading mechanism as a consequence of the 
possible migration of the interface, ~Vr ..... between the 
bulk and the craze and also the translation of active 
zone/plastic zone in the direction of craze advance. It 
can be conveniently expressed in terms of Eshelby's 
tensor, i.e. energy momentum tensor of the elasticity 
P [33] 

a G  = - -  ~ ar  [ e i j ]  n j d E ,  (34) 
~Vcraze 

where 6~i is a virtual displacement vector at each 
point of ~Vc ..... describing the migration of the inter- 
face, njdE is an oriented surface element and [Pij] is 
the jump across the interface of the Eshelby tensor 
component, Pij 

Pij =fSi j  - CYkiUk,j. (35) 

In Equation 35fs tands  for the Helmholtz free energy 
density in the case of isothermal change, 6ij is the 
Kronecker symbol, cykj are the Cauchy stress tensor 
components, uk denotes the displacement vector com- 
ponents and Ukj = 8Uk/aXj is a deformation gradient. 

To render the problem more tractable we assume 
that the active/plastic zones are planar zones, i.e. their 
width, y(xl), is significantly smaller than their total 
length a-c. Neglecting the terms of the order y/(a-c) 
(since y/(a-c)<< 1), the normal vector of the bulk/craze 



boundary n can be approximated by n = (0, 1) every- 
where except at the very tip of the plastic zone. The 
first component of the vector 8~i is chosen as a virtual 
increase of the craze length 8a. The second component 
is normal to the bulk/zones interface and it will be 
specified later. Equation 34 can then be recast in the 
following form 

(3G = - -  j" a r  - -  P Z 2 ) d x l  - -  aa 
aVca 

above, the last right-hand side integral yields 

- cY22 dxl = %[y(c)  - y(b)] + o y y ( b ) ,  
c 

(39) 

where y(c), and y(b) are the displacement openings at 
the inert zone tip and at the active zone tip respective- 
ly, (see Appendix 1). 
Let us first assume that P2Bz = P2Z> Then Equation 36 
reduces to 

x ~ (p~; _ pCz)dx , _ aalim ~ p~3njdG " (36) 
aVca ~ 0  av~ 

In Equation 36 the superscript 'B' refers to quantities 
related to the bulk material, whereas the material of 
the craze is labelled with the superscript 'Z'. ~V~ 
denotes the planar interface between the zones and the 
bulk on the upper and lower active/plastic zones sur- 
faces. The first term on the right-hand side of Equa- 
tion 36 corresponds to the change in the Gibbs poten- 
tial, G, due to the expansion of the active/plastic zones. 
The integration over the inert zone is not included in 
this term because, as stated above, the inert zone no 
longer becomes thicker. The second term corresponds 
to the change of the Gibbs potential due to the trans- 
lation of both zones. Note that the brackets in Equa- 
tion 34 were defined in the second term of Equation 36 
in a slightly different way - namely, due to the transla- 
tion of zones in the direction of craze advance, the 
interface ~V~, gradually becomes a part of the inert 
zone/bulk interface where the Eshelby tensor com- 
ponent PC 2 has to be applied. However, it holds by 
definition that u2.~ = 0 along the inert zone, which in 
view of Equation 35 gives PC 2 = 0 and the integral in 
the second term turns into the well known J-integral 
of fracture mechanics. The third term in Equation 36 
represents the change in the Gibbs potential due to the 
shift of the tip of the plastic zone. ~V~ is a contour 
encompassing the plastic zone tip. The integration of 
this term is readily performed by means of the asymp- 
totic solution [34] 

lim fa P~j njdF - K~p (37) 
~ o  r E ' 

where K t i  p is the stress intensity factor characterizing 
the elastic field in the vicinity of the plastic zone tip, 
and E is the Youngs modulus of the polymer. Note 
that for plane strain condition the Youngs modulus 
E has to be replaced by E/(1 - v 2) everywhere in the 
text with v standing for the Poisson's ratio. Note also 
that pZj gives no contribution to the integral (having 
weaker elastic field singularity than P~j). 

The integral in the second term becomes 

J = PZ2dx l  = - -  (Y22 \ ~x ,  ~xl ] dxl 

s ~ 
= - -  ( T 2 2  ~ d x l ,  (38) 

where u~- - u2 ~ = y is the opening displacement in the 
zones. With reference to the 3-zone model described 

K 2. 
~G * "~"P (40) ~a - ~ [ y ( c )  - y ( b ) ]  + cSvy(b) _ E ' 

or, under the assumption of small scale yielding and 
by the definition of Irwin's potential energy release 
rate, - gG/~a = K 2 / E  

K 2 
E - cro[y(c) - y(b)] + (yyy(b) -t- - -  Kt]pE ' (41) 

where K is the applied stress intensity factor. Because 
the extent of all zones along the craze is determined by 
the condition that the stresses are to be non-singular, 
Ktip = 0 and one can easily recognize that Equation 
41 reduces to the well known relation in fracture 
mechanics - ~G/~a = Y. 

We now consider the general case when the jump of 
the normal component P22 of Eshelby's tensor in the 
first right-hand side term of Equation 36 reaches 
a value 7. 

7 = P~2 - P2Z2. (42) 

It follows from the definition of Eshelby's tensor 
Equation 35 that the specific energy y is comprised of 
the differences between the Helmholtz free energy 
densities and also the work densities of the material 
before and after the transition from the dry bulk to the 
craze fibrils with absorbed environment liquid. In the 
following we will approximate the specific energy, T, 
by the free energy density change introduced in Equa- 
tion 31. However, because in our definition the change 
of the free energy density is defined as the difference 
between the final and the initial state of system we 
write 

7 ~ - AfM. (43) 

It is postulated that this change of free energy occurs 
only across the interface between the bulk and the 
active craze zone. Further, the virtual displacement, 
8~2, is chosen as half of the virtual craze thickening, 
St(x1). t (x l )  is related to the draw ratio, X, and the 
craze displacement, y(x l ) ,  by 

)v 
t(Xa) - )v - 1 y ( x l ) ,  (44) 

see Appendix 2. Under the assumption of constant 
draw ratio along the active craze zone the virtual craze 
thickening St(x1) is 

)v 
( ~ t ( X l )  = - -  6 y ( X l )  

)~--1 
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and the first term on the r ight-hand side of Equa t ion  
36 becomes 

- ~ 5r -- pz2)dx , = _ ~ ar - -  pz=)dx~ 
a V c a  aVcb 

= A f M x X ~  1 S~ 6y(Xl)dX" (45) 

where Af~ is approx imate ly  considered to be a cons- 
tant  a long the active zone and  is put  outside the 
integral. The craze displacement  opening y can be 
generally described by the function y = y(x>a,b,c) 
(see Appendix  1), so that  the virtual displacement  8y 
related to the virtual advance  of craze length 8a reads 

6y(xO = ay(xt, a, b, c) 6a. (46) 

Substi tut ing Equat ion  46 into Equa t ion  45 and ap- 
plying the result of Rice [35] (see Appendix  3) to the 
right side term we get 

k [b~y(xl, a)~ k 2 K ' K  [cyr Af 2 -/Jo u x ~ = A f ~ x _  1 Ec~c 

(47) 

2.2.2. Numerical results and discussion 
The expression on the right-side of Equa t ion  31 was 
evaluated as a function of ~p in the range q) ~ 0 -0 .6  
with the paramete rs  having the following values: 
T = 3 0 0 K ,  M0 ~ 50 000-500 000, p = 1 0 3 k g m - 3 ,  
Z e 0-0.35, r E 103-104, s = 8, Ap = ~y/3, Cry 
8.5 52 MPa ,  and under  the assumpt ion  V~2 ~ V~ml. 
Correct ion was made  to take account  of the liquid 
concent ra t ion  on yield stress according to Equa t ion  2. 
The  results in Fig. 9 were compu ted  with a value of the 
interact ion pa rame te r  X = 0.25 and molecular  mass  
M~ = 50000. One  can see that  the min imum of the 
Helmhol tz  free energy density is reached for a concen- 
t ra t ion (p of  abou t  0.27. The strong influence of the 
value of ~sy is quite apparent .  The  same compu ta t ion  
made  with Me = 500 000 did not  reveal any marked  
differences. 

The results in Fig. 10 were obta ined for 
Cry = 52 M P a  and they demons t ra te  a ra ther  weak 
influence of Z on AfM in compar i son  with the influence 
of Oy. When  the correct ion for the effect of liquid 
concent ra t ion  on the yield stress in omitted,  the Helm-  
oltz free energy decreases m o n o t o n o u s l y  for 
~y _> 10 M P a  as displayed in Fig. 11. Obviously,  the 

where the external stress intensity factor, K' ,  generally 
differs f rom K in Equa t ion  41. Combin ing  Equat ions  1 • 
47, 45, 39, 37 and 36 and assuming that  Kt~o = 0 in 
Equa t ion  37 we finally arrive at 

K '2 _ 2AfM X K ' K [ o o ]  _1x10 e 

E E X -  1 ~o 

+ %[y(c )  -- y(b)] + (syy(b).  (48) 

)~_3x106 
Consider  for a m o m e n t  that  the distr ibution of zones 
along the craze and their opening displacements  are 
the same as in Equa t ion  41 (with grip = 0). Then  
Equa t ion  41 can be subst i tuted into Equa t ion  48 lead- _5• 
ing to 

)v K'K[~s~] K2 (49) 
K ' 2  = - -  2kfM ;L - 1 ~ + " 

Since zXfM < 0 and K [cyo] < 0, it follows f rom Equa-  
t ion 49 that  generally K '  < K. Solving Equa t ion  49 for 
the ratio K'/K we obta in  

K '  X K [ o ' c ]  lx lOe 

K - AfM KO v -- 1) (so 

+ AfM 1) % / + 1 (50) ~" -1• 

E 
Equat ion  50 provides the reduct ion of the external 2 
stress intensity factor (or more  simply, external load if ~ _3• 6 
the total  length of craze, a, is a constant).  Thus,  the 
same craze thickness and zones distr ibution as for 
a craze in air condit ions is reached with a lower 
external load, due to the addi t ional  driving force 
which is provided by the rmodynamic  instability bet- 
ween the craze mater ial  and environment .  This effect 
is super imposed  over  the effect of env i ronment  on the 
mater ia l  propert ies  related to the crazing as investi- 
gated in the preceding section. 
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Figure 9 Plot of the Helmholtz energy density AfM as a function of 
(p for X = 0.25 and values of c~v of (---) 17 MPa, ( . . . . .  ) 35 MPa 
and ( ) 52 MPa. 
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Figure 10 Plot of the Helmholtz energy density AfM as a function of 
cp for r = 52 MPa and values of% of; ( - - - )  0.35, ( . . . .  ) 0.25, ( . . . .  ) 
0.1 and(---  )0. 
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Figure l 1 Plot of the Helmholtz energy density AfM as a function of 
q~ with Z = 0.25 without the correction to Equation 2. The values of 
cry used were; ( - - - )  8 MPa, ( - - - )  17 MPa and this case Z = 0.35, 
( . . . .  ) 17 MPa and ( - - - )  52 MPa. 

conclusion can be easily drawn that the last term in 
Equation 31 is dominant. 

As follows from Figs 9 and 10, the minimum value 
of AfM is about 3 x 10 6 4 • 10 6 Jm -3 and this value 
will be used in subsequent computations. 

To evaluate the ratio K'/K in Equation 50 one first 
has to generate a set of cohesive K-factor values 
K[croJ ,  K[cro], K[cry] which fulfil the equilibrium 
condition of Equation 32 or, equivalently, a set of 
lengths b and c fulfilling Equation 33, and which 
comply with certain criteria. The first criterion which 
is required to be met is the critical opening displace- 
ment at the base of the craze plastic zone since the aim 
is to investigate the state of initiation of the craze 
advance. Equation 21 from the first section and 
Equation A6 from Appendix 1 provide the following 
equation 

21.3 --r = ~E(cry - cr~)b In b , (51) 
TO 

2 x 1 0  3 [  F'Co ~1/2 
where cry = 31/2zo, crc ~ ~ 5 x (3 )1 /2 j  [363, 

and the length a of the craze has been chosen to be 
100 pm. Equation 51 was solved for b with different 
values of'c 0 and F. The plots ofb as a function of% are 
shown in Fig. 12, Note, that the plot of b(zo) for 
F = 0.08 J m - 2 is not displayed over the whole range 
of'c0 values because a solution was not found at the 
lowest values of%. The cohesive stress intensity factor 
of the plastic zone K[cry] was computed for corres- 
ponding values of b from the standard formula 

(af K [c rv ]=  2cry cos - t (b/a) (52) 

and its absolute value is,plotted as a function of Zo for 
various values of F in Fig. 13. Since K [cry] stands for 
a certain threshold applied stress intensity below 
which the craze advance cannot be initiated (see also 
the text below Equation 33), it is interesting to note 
that if an environment does not affect the total surface 
energy F, the threshold applied stress intensity even 
slightly grows due to plastification. 

The results obtained by solving Equation 51 were 
employed as an input data set for computer genera- 
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Figure 12 Plot of the total half-length of inert and active zone b as 
a function of t0 for various values of total surface energy F fulfilling 
the condition of critical displacement opening of Equation 26. The 
values of F used were; ( - - - )  0.02 Jm -z, ( . . . .  -).0.038 Jm -2 and 
( . . . .  ) 0.08 Jm-2. 
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Figure 13 Plot of the absolute value of the critical stress intensity 
factor of plastic zone as a function of to for values of F of ( -- ) 
0.08 Jm 2, (___) 0.038 Jm -2 and ( . . . .  ) 0.02 Jm 2. 

tion of a series of half-length c (see Fig. 14). The 
unknown value of the stress along the inert zone, croc, 
was taken as a variable, and the values of b, to and croc 
were entered as parameters for each particular series. 
The surface energy F was taken as a constant for all 
computations and equalled 0.038 J m -2, and the ex- 
ternal remote stress cr~ was set at 9 MPa. All those 
generated curves c(cr0c ) which did not comply with the 
experimentally justified condition 

y(c) >_ 2y(b), (53) 

where y(c) is given by Equation A8 and y(b) by Equa- 
tion 51, have been automatically excluded. The plots 
in Figs 14 and 15 show some of the generated data sets 
of c values as a function of non-dimensional nor- 
malized stress cro~/croo for various values of crc within 
the active zone and, correspondingly, for various 
values of cry within the plastic zone of the craze. The 
sets of c values are also displayed only over the inter- 
vals where the solution of Equation 33, 51 and 53 was 
found. Note that the admissible values of the nor- 
malized variable cr0c/cr~ lie within the interval 
0.67-0.8. Since the actual value of croc is not known, 
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Figure 14 Plot of computer generated sets of the half-length c of the 
inert zone as a function of normalized stress o0jo ~ for values of eye 
of( ) 1.13 with b = 98.9 lam, ( - -~  1.06 with b = 98.7 gm and (--- 
- - -) 0.99 with b = 98.4 lam. 
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Figure 16 Plot of computer generated sets of normalized cohesive 
stress intensity factor of the inert zone as a function of normalized 
stress c%jcy~ for various values of %/c~ of ( . . . . . .  ) 0.99 with 
K[oJ/K = -0.09 ( - ) 1.06 with K[cyJ/K = -0.085 and (---) 
1.13 with K[c~c]/K = - 0.083. 
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Figure 15 Plot of computer generated sets of the half-length c of the 
inert zone as a function of normalized stress c%o/cy ~ for the values 
of c%/o~ of ( ~ 0.94 with b=98.01am, ( - ) 0.89 with 
b = 97.6 gm and ( . . . . . .  ) 0.84 with b = 97 ~tm. 
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Figure 17 Plot of computer generated sets of normalized cohesive 
stress intensity factor of the inert zone as a function of normalized 
stress c~0c/c~ for various values of %/c~,v of ( . . . . . .  ) 0.84 with 
K [cyc]/K = - 0.34, (-- -) 0.89 with K [c~c]/K = - 0.096 and (- - -) 
0.94 with K[cYcl/K = 0.094. 

the only thing which can be done is to further elimin- 

ate those sets which are not  apparent ly  in accord with 
experimental  observations.  By inspect ion of Figs 14 
and  15, this concerns part icularly the lower set of 
generated data  in Fig. 15 (the curve generated for 

cyo/o~ = 0.84) since the predicted values of c are too 

short and  the upper  set in Fig. 14 (cyc/c~ = 1.13) 
where, conversely, the predicted values of the half 
length of the inert  zone c are too long for the given 
total craze length a and  create 95% of the total  craze 

length. It is interesting to see the corresponding values 
of the cohesive K-factor K [~oc] which are plotted as 

non-d imens iona l  normal ized values K [Cyoo]/K 
against  cyo~/c~, in Figs 16 and  17. Notice in the 
legend of Figs 16 and 17 that  the cohesive K-factor of 

the active zone increases with decreasing stress c% 
acting over this zone. This occurs because of a simul- 
taneous,  more d o m i n a n t  increase of the active zone 
length b - c  as follows from Figs 14 and 15. Finally,  we 
can discuss the ma in  goal of this paper, namely  the 
reduct ion of external load for the ini t ia t ion of a craze 
advance due to the the rmodynamic  instabil i ty 
between the craze material  and  env i ronment  as 

3 3 4 4  

predicted by Equa t ion  50. Employing  the preceding 
results, Equa t ion  50 has been plotted as a funct ion of 
normal ized stress ~oc/C~.  The same combina t ion  of 
the other parameters  has been used as indicated in the 
legends of Figs 18 and 19. If, as with the data  sets for 

c values, the upper  set in Fig. 18 and  the lower set in 
Fig. 19 are excluded, it is possible to state the pre- 
dicted reduct ion of external stress intensi ty factor, or 
external load for cons tant  craze length, lies in the 

range 0.75 0.94. This means  that the craze advance in 
an env i ronment  can occur under  a lower external 
stress level than in air even if the material  properties of 
the polymer are not  affected. The t radi t ional  approach 
for explaining why glassy polymers are more prone to 
undergo crazing in some envi ronments  is based on 
experimental  and theoretical evidence of plasticization 

which leads to a drop in the stress needed for crazing. 
This is generally accepted, especially for propagat ing  
crazes. However, some difficulties arise concerning the 
explanat ion for a lower threshold load level for the 
ini t ia t ion of craze advance especially in cases when the 
env i ronment  affects the surface energy only slightly or 
not  at all. Fig. 13 then shows clearly that the threshold 
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Figure 19 Plot  of the reduct ion of external stress intensity factor as 
a function of normalised stress Cro~/~ for values of crJcy:~ of; 
( - - - )  0.94, ( - -) 0.89 and ( . . . . . .  ) 0.84. 

applied stress intensity even increases with decreasing 
yield stress�9 The model proposed in this paper can 
solve this problem since it predicts a higher applied 
local stress intensity in the craze tip due to the envi- 
ronment. 

3. Conclusions 
Micromechanical analysis of the initiation of craze 
advance provides the geometrical characteristics of 
craze microstructure as the mean fibril spacing, mean 
fibril diameter, the volume fraction of fibrils and criti- 
cal opening displacement at the craze tip and relates 
them to basic material parameters such as yield stress 
and surface energy. The derived expression for the 
critical displacement at the craze tip h~rit could be used 
in the criterion for the initiation of craze advance 

F 
h >_ hcrit = 21 .3- - .  (54) 

TO 

Remembering the known effect of plasticizers on the 
yield stress and the surface energy the influence of 
plasticizers on the craze microstructure is then discussed. 

Starting with the idea of the thermodynamic 
non-equilibrium between the polymer at the craze tip 
region and its environmental liquid, the thermodyn- 

amic potential is constructed in terms of irreversible 
thermodynamics as a function of the concentration of 
liquid absorbed in the craze and dilatant stress in 
fibrils. Some simplifying assumptions are necessary to 
make the problem tractable. The spontaneous de- 
crease of the thermodynamic potential provides an 
additional driving force for craze growth. The key 
problem for including this force in the fracture mech- 
anics framework is overcome by using the Eshelby 
tensor [33]. Detailed analysis provides us with an 
expression for the effective reduction of applied stress 
intensity factor which is required for the initiation of 
craze advance. The investigated phenomenon shows 
that an ESC agent can provide a certain kind of 
antishielding of craze tip and thus increase the liability 
to craze growth�9 Numerical calculations demonstrate 
the various features of the model proposed. 
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Appendix 1 
Following the Bilby, Cottrell and Swinden approach 
of representing the plastic zone by a distribution of 
dislocations, the equilibrium of each dislocation 
requires that 

where 

E b  ' a  f ( x l )  
4 _ ~ x~-- - -x ' l  d x l  = g ( x l )  

a 

(A1) 

g ( x l ) = ~ o o - ~ o r  f o r l x l l < C  

g ( x l )  = c~  - c~r for c < Ix~l < b 

g ( x l )  = croo - cyv f o r b < l x l [ < a  

and b' is the Burgers vector of dislocations, andf(Xl)  
represents the number of dislocations between Xl and 
X 1 + d x  1. 

The solution to Equation A1 is 

4(x~  - - a 2 )  t/2 

f ( x l )  = rcEb' [(O'y - cYc)I1 + (cyc -er0c)I2] , 

(a2) 

where 

b dx'~ 
11 = ~ , a2)1/2 

- b  ( x l  - x 0 ( x l  2 - 

c 

I2 = ~ , dx'l 
- c  (X1 - -  X1)(Xr? - -  .2)1/2 

and 

The integrals 11 and 12 exist in the Cauchy sense that 
they represent the principle value P.V. of the integrals. 

f ( x )  is the linear combination of two similar integrals 
indicating that there is linear superposition of two distri- 
bution functions. 
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It can be shown that 

where 

4 
f ( x 1 )  - -  xEb' [(c~v - ~o)I3 + (% - ~or (A3) 

) (m2 
+ n 2 - -  cosh-1 b + xl 

/ cosh,(.1 ) (Ol ~- -}- / / 1  - -  c o s h - 1  
C - -  X 1 C -}- X l 

and 

a 2 - -  c 2 c 

m 1 - -  _ _ ,  n 1 = _ ,  
a a 

a 2 _ b 2 
/ /n2 - - ,  

a 

b 
H 2 ~ - - .  

a 

+n2) 
+ n l )  

The opening displacement at the active zone tip y(b) is 
given by 

- i  y (b ) -  b'f(xx)dx~ (A4) 
b 

Finally one obtains 

8 a 
y(b) = ~ ((Sv - oc)bln 

4,._~ + ~- b + c)cosh-1 ml 

- ( b - c ) c o s h - ~  ( c @ b  + n l ) l .  (A5) 

The second term in equation A5 is much smaller than 
the first term. Thus as a good approximation 

y(b) ~- --~((Sy - (sc)bln b . (A6) 

The opening displacement at the inert zone tip y(c) is 
given by 

a 

y(c) = ~ b'f(xl)dXl , (A7) 
C 

and in the similar approximation 

y(c) = ~8~((sc - ~o~)cln 
a 
c 

4 /'2(a - b) ) 
+ ~ ( ~ y  - crr - c ) c o s h  - 1  ~k- ~ - -  C q- 1 . 

(18) 

Appendix 2 
The total craze thickness t(xl) consists of two contri- 
butions 

t(Xl) = to(X1) + y(xl) ,  (A9) 

where to(x1) is an unextended craze fibrils length 
drawn from the surrounding bulk and y(xl) is the total 
displacement of craze surfaces, see Appendix 1. The 

3 3 4 6  

drawing ratio 7~ is defined by 

t(x,) 
h = ( A 1 0 )  

to(X1)  " 

Usually, X ~ 4. Combining Equations A9 and A10 we 
arrive at 

h 
t (Xl )  - -  y(x1) .  (All)  

h - 1  

Appendix 3 
The principal result derived by Rice [35] concerns two 
distinct load systems symmetrical about the crack line 
denoted by Qi and Qj which induce the stress intensity 
factors K(i)(a) and K(J)(a), where a is the crack length. 
It holds 

dC 0 _ 2 

da E 
K (i)(a) K(J)(a), (A 12) 

where the compliances Cij read 

Cij = ~t (i) u(J)dE, (A13) 
E 

with t (i) standing for the stress vector of the loading 
system Qi on the boundary E and with u (j) standing 
for the displacement vector of the loading system Qj 
on the boundary E. No body forces are assumed. 

Clearly, if E denotes the craze surfaces with the 
stress component t~ ) = _+ ~o being non-zero along the 
craze faces in the interval xl e (c; b)  and inducing the 
stress intensity factor K [ % ] ,  and with u~ ) =  
+_ 1/2y(xl,a) being the displacement component of 

the loading systemj inducing the stress intensity factor 
K', Equation A13 yields 

Cij = ~ ~cy(xl, a)dxl. (A14) 

Substituting Equation A14 into Equation A12 one 
gets 

~y(xl, a) dx~ = 2 cyc ~ 8 ~  ~ K[oc]K'  , (115) 

which is Equation 47 used in the main body of the 
paper. 
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